texas oncology more breakthroughs. more victories
Some of our cancer centers may have important notifications found on the location page. View More Important Notifications x
print
Texas Oncology-Greenville Lou & Jack Finney Cancer Center
4215 Joe Ramsey Blvd.
Greenville, TX 75401
T: 903-408-5112
After HoursT: 866-613-3003
Hours of Operation:




New Patient Forms

Radiation Therapy at Greenville Cancer Center

The majority of our care is provided in an outpatient setting using customized therapies ranging from chemotherapy and radiation therapy to advanced technologies like immunotherapy, proton therapy, genetic testing, and genomic sequencing. Advanced treatments and best practices that come from a robust program of clinical trials and leading-edge research create the high caliber of care you’ll find at Texas Oncology.

Radiation Modalities

Texas Oncology-Greenville Lou & Jack Finney Cancer Center offers a robust array of radiation modalities:

Imaging Equipment

  • >Computed Tomography (CT)
    Computed tomography (CT) is a quick and painless procedure that combines X-rays with computers to produce highly detailed cross-sectional pictures of your body. The images provide valuable information for staging your cancer or planning your treatments. Learn More.
    • >CT simulation

      After the initial consultation and decision to use radiation treatment, the next session is usually a planning session, which is called a simulation. Simulation is used to determine the radiation treatment fields and most of the treatment planning. Of all the visits to the radiation oncology facility, the simulation session may actually take the most time.

      The CT simulator does not deliver radiation treatment, but instead allows the radiation oncologist and technologists to see the area to be treated. Images are obtained and transferred to the planning system where a virtual 3D image of the patient is created, and the treatment delivery plan is developed.

      For the simulation session, temporary marks are made on your skin with markers to identify the treatment areas. The room is periodically darkened while the treatment fields are being set. Alignment is critical during simulation and is facilitated by lasers mounted on the wall and ceiling. Special individually constructed immobilization devices may be used to help achieve this alignment. While you may see red lines of light, the low energy lasers are for alignment purposes only and you will not feel burning or anything else from the laser light.

      Once the aspects of the treatment fields are set, the technologist will take special simulation X-rays representing the treatment fields. In most centers, the patient is given multiple “tattoos,” which mark the treatment fields and replace the marks previously made with magic markers. These tattoos are not elaborate and consist of no more than pinpricks followed by ink, appearing like a small freckle. Tattoos enable the radiation technologists to set up the treatment fields each day with precision, while allowing you to wash and bathe without worrying about obscuring the marks that indicate where treatment will be delivered.

      Sometimes several simulation sessions are necessary in order to optimize treatment and are often performed prior to planned “boost” or “reduced field” treatments as part of the overall treatment plan. Learn More.

CT Simulation Techniques

  • >3D simulations
    Three-dimensional conformal radiation therapy (3D-CRT) is delivered by radiation beams positioned from different directions that are designed to match the shape of the tumor. This helps to reduce radiation damage to normal tissues and better kill the cancer by focusing the radiation dose on the tumor's exact shape and size. Learn More.
  • >4D CT scanning
    Four-dimensional computed tomography is a type of CT scanning which records multiple images over time. Images are mapped to the breathing cycle to give care teams more information about respiration and internal movement for treatment planning. Planning 4D-CT scans can be used to minimize target volumes for lung cancer radiotherapy. Learn More.
  • >Virtual Simulations
    Simulation is the first step in the radiation oncology treatment process and involves consultation with your physician and radiation therapy team to plan for treatment. Planning includes determining the correct body position for treatment, taking imaging scans, making reference marks for the positions on the skin, and virtual simulation. During virtual simulation, the images taken earlier in treatment planning are used to create a 3D model of your anatomy, including the tumor and its location, which augments an oncologist’s ability to plan the optimal course of treatment. Learn More.

External Radiation Therapy

  • >Conventional 2D, 3D, electron treatments
    • Conventional 2D – Conventional (2D) radiation therapy refers to the technique of radiation therapy where treatments are planned by defining a limited number of beams with the boundaries delineated on patient X-rays. Conventional 2D radiation therapy is typically used for palliative treatment.
    • 3D Conformal Radiation – A type of external beam radiation therapy, 3D conformal radiation therapy combines images from CT, MRI, and PET scans to plan the radiation treatment. Software analyzes the images and helps direct radiation beams to conform to the tumor’s shape.
    • Electron Treatments – Electron therapy uses electrons directed to the outer layers of the skin to cover the surface of the body. It does not go into deeper tissues or organs.  
    Learn More.
  • >Intensity Modulated Radiation Therapy (IMRT)
    Intensity modulated radiation therapy (IMRT) is an advanced form of non-invasive radiation treatment enabling radiation oncologists to precisely target tumor cells. It uses computed tomography (CT) to create 3D images and treatment plans to deliver targeted radiation beams of varying intensity to cancerous tumors. By using image-guidance technologies, your radiation oncologist can localize your treatment and minimize damage to surrounding tissue. Learn More.

Image-Guided Radiation Therapy

  • >Electronic Portal Imaging Device (EPID)
    Electronic portal imaging devices (EPIDs) measure X-ray intensity transmitted through a patient during treatment. This measurement is transformed into a 2D digital image to accurately align the radiation beam to the tumor. Learn More.
  • >Onboard Imaging - Conebeam CT, Kilovotage imaging, Fluoroscopy
    Onboard imaging allows care teams to better align treatment to a tumor that may have a complex shape or move, which damage to healthy tissues.
    • Cone Beam Computed Tomography (CBCT) – Physicians use Cone Beam Computed Tomography (CBCT), which utilizes 3D volumetric imaging (vs. 2D X-ray images), to provide improved visualization, better patient positioning, and more precise treatment of cancerous tumors.
    • Kilovoltage Cone Beam Computed Tomography (kV-CBCT) – A type of board imaging, kilovoltage Cone Beam CT allows care teams to make adjustments to the X-rays that impact the intensity and quality of the image.
    • Fluoroscopy – Fluoroscopy is another medical imaging test that can be used in IGRT. An image of the area is created by sending an X-ray beam continuously through the body to create an image. Physicians can view the image on a monitor in real time to see the movement of internal organs.
    Learn More.

Respiratory Gating

  • > Deep Inspiration Breath Hold Technique
    Deep inspiration breath hold (DIBH) is a technique used to minimize radiation doses to the heart over a course of therapy for breast cancer. During both simulation and treatment, the patient takes a deep breath and holds it for a designated amount of time while radiation is given, allowing for a decrease in radiation dose to the heart.
  • > Varian RGSC or RPM
    Varian respiratory gating for scanners (RGSC) or real-time position management (RPM) gives care teams the ability to accurately allow for tumor motion and patient breathing in treatment planning.

Brachytherapy Procedures

  • >High Dose Rate (HDR) Brachytherapy
    High dose rate (HDR) brachytherapy uses radioactive material inserted into applicators placed within body cavities or tissues to deliver a high dose of radiation precisely to the tumor. Learn More.
    • >Gynecological HDR
      HDR internal radiation therapy is used to treat gynecologic cancers by delivering radiation internally and precisely targeting the tumor. This precision minimizes the impact on the surrounding healthy tissue and limits side effects. The radiation is delivered through an applicator that is inserted internally and is removed once treatment is complete. Treatment time is significantly reduced to three to six treatments that last 10 to 20 minutes each.  Learn More.
    • >Prostate Cancer HDR
      Prostate HDR brachytherapy involves temporarily implanting flexible needles within the prostate to allow the delivery of treatment using radioactive materials. Treatment time is reduced to one and a half days and it is an alternative treatment option for qualifying patients as compared to external beam treatments, which last five to seven weeks. Learn More.
    • >Skin HDR
      Skin HDR internal radiation therapy is a convenient, effective treatment alternative with outstanding results and minimal side effects. A radioactive seed travels through an applicator and delivers a precise radiation dose directly to the target within one-millimeter accuracy. It achieves good to excellent cosmetic results and is a good treatment option for cancers around the eye and nose that are more difficult to treat surgically. It is typically administered two to three times per week for a total of six to 10 treatments. Treatment takes less than 10 minutes and is painless.  Learn More.
  • >Prostate Seed Brachytherapy
    A type of brachytherapy radiation treatment, prostate seed implants are very small radioactive pellets permanently inserted into the prostate. They give off low doses of radiation over time and become inert. Learn More.

Radiation Information Systems

  • > Varian ARIA™
    Varian ARIA™ is an electronic health record and image management system that organizes patient data and medical charts from diagnosis through follow up. The system assists physicians by managing clinical, administrative and financial operations for medical, radiation and surgical oncology.